Mixing Strategies for Density Estimation

نویسنده

  • Yuhong Yang
چکیده

General results on adaptive density estimation are obtained with respect to any countable collection of estimation strategies under Kullback-Leibler and square L 2 losses. It is shown that without knowing which strategy works best for the underlying density, a single strategy can be constructed by mixing the proposed ones to be adaptive in terms of statistical risks. A consequence is that under some mild conditions, an asymptotically minimax-rate adaptive estimator exists for a given countable collection of density classes, i.e., a single estimator can be constructed to be simultaneously minimax-rate optimal for all the function classes being considered. A demonstration is given for high-dimensional density estimation on 0; 1] d where the constructed estimator adapts to smoothness and interaction-order over some piecewise Besov classes, and is consistent for all the densities with nite entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures

We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

Nonparametric Estimation for Stationary Processes

We consider the kernel density and regression estimation problem for a wide class of causal processes. Asymptotic normality of the kernel estimators is established under minimal regularity conditions on bandwidths. Optimal uniform error bounds are obtained without imposing strong mixing conditions. The proposed method is based on martingale approximations and provides a unified framework for no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007